TRIFLUOROMETHYLPEROXYPHOSPHORYL DIFLUORIDE, CF₃OOPOF₂, AND TRIFLUOROMETHOXYPHOSPHORYL DIFLUORIDE, CF₃OPOF₂

PETER A. BERNSTEIN AND DARRYL D. DESMARTEAU* Department of Chemistry, Northeastern University, Boston, Mass. 02115 (U.S.A.) (Received June 24, 1972)

SUMMARY

The new compounds CF_3OOPOF_2 and CF_3OPOF_2 have been prepared by the reaction of trifluoromethyl-hydroperoxide, CF_3OOH , with μ -oxo-bis-(phosphoryl difluoride), $P_2O_3F_4$, and difluorophosphine- μ -oxo-phosphoryl difluoride, $P_2O_2F_4$. Infrared and NMR spectra, physical properties and some chemical reactions are reported for the compounds.

INTRODUCTION

Fluorocarbon derivatives of phosphorus are well known¹⁻³. Examples include trivalent phosphorus compounds and 4- and 5-coordinate pentavalent phosphorus derivatives. The majority of these compounds contain the fluorocarbon group bonded directly to phosphorus with a few examples where the fluorocarbon group is attached through nitrogen or sulfur. No examples are known where the fluorocarbon group is attached through oxygen**. This is surprising as a number of organophosphorus derivatives of this type are known¹.

Fluorinated phosphorus peroxides are virtually unknown and only few compounds containing phosphorus bonded to a peroxide group have been reported^{6, 7}. Recent work with trifluoromethyl-hydroperoxide^{8, 9} indicated that this reagent might be used in the synthesis of both trifluoromethylperoxy and trifluoromethoxy derivatives of phosphorus. Initial attempts involving reactions of the hydroperoxide with phosphorus fluorides were unsuccessful. However, attack by

^{*} Department of Chemistry, Kansas State University, Manhattan, Kansas 66502 (U.S.A.).

^{**} After this work was completed, some perfluoroalkoxy fluorophosphoranes were reported⁴ as well as several perfluoroaryloxy phospharanes⁵. However, none of these compounds contain small primary perfluoroalkoxy groups.

trifluoromethyl-hydroperoxide on the phosphorus-oxygen bridge bonds in μ -oxobis-(phosphoryl difluoride), $P_2O_3F_4$, and difluorophosphine- μ -oxo-phosphoryl difluoride, $P_2O_2F_4$, have led to high yields of trifluoromethylperoxyphosphoryl difluoride, CF₃OOPOF₂, and trifluoromethoxyphosphoryl difluoride, CF₃OPOF₂.

EXPERIMENTAL

General

All manipulations of volatile compounds were carried out in a Pyrex vacuum system equipped with glass–Teflon valves. Connections to the vacuum system were made using ground joints lubricated with Kel-F 90 grease. Pressures were measured with a mercury manometer or a Wallace and Tiernan differential pressure gauge. Molecular weights were determined by vapor-density measurements. Vapor pressures were determined in the usual way¹⁰.

Infrared spectra were recorded on a Beckman IR 10 using a 10 cm cell fitted with silver chloride windows. NMR spectra were taken on a Varian A56–60 spectrometer using trichlorofluoromethane as an internal reference and tetramethylsilane as an external reference.

Reagents

Hydrogen sulfide, HCl and Cl₂ were obtained from the Matheson Co., CF_3CO_2H from Eastman Kodak and CH_3OH was of reagent grade. All were used without further purification. Tetrafluoroethylene¹¹, CF_3OOH^8 , $P_2O_3F_4^{12}$, $P_2O_2F_4^{13}$, CF_3OF^{14} , $CF_2(OF)_2^{15}$, SF_5OF^{16} and $S_2O_6F_2^{17}$ were obtained by literature methods.

Preparation of CF_3OOPOF_2 (nc)

In a typical experiment, 2.1 mmole each of $P_2O_3F_4$ and CF_3OOH were condensed into a 25 ml Pyrex vessel cooled to -196° . The mixture was allowed to warm to 22° over a 15 min interval and held at this temperature for an additional 20 min. The products were separated through traps at -55, -111 and -196° after first removing oxygen at -196° . The -55° trap contained HOPOF₂, CF_3OOPOF_2 was retained at -111° and the -196° trap contained POF₃, COF_2 and small amounts of CF_3OOPOF_2 . The yield of pure CF_3OOPOF_2 was 87% based on the equation

$$P_2O_3F_4 + CF_3OOH \rightarrow CF_3OOPOF_2 + HOPOF_2$$

Trifluoromethylperoxyphosphoryl difluoride, CF₃COOPOF₂, had the following physical and spectroscopic characteristics: b.p. 15.5°; m.p. -88.6° ; mol. wt.: calcd., 186.6; found, 185.8; $\Delta H_{\rm vap} = 7.65$ kcal mole⁻¹; $\Delta S_{\rm vap} = 26.5$ e.u.; IR, cm⁻¹: 1395 (s), v(P=O); 1285 (s), 1245 (vs), 1195 (vs), v(CF); 980 (s), 960 (s), 910 (s), 860 (m), 825 (m), v(asym. PF, sym. PF, PO, CO, OO); 675 (w), 595 (w),

495 (vs), 460 (s), $\delta(PO_2F_2, CF_3OO)$; NMR: φ^* 88.3 (d, q, PF), φ^* 69.8 (d, t, CF), J(PF) = 1109 Hz, J(PCF) = 1.3 Hz, J(FF) = 2.6 Hz. The vapor pressure over the range -32.4 to 7.4° followed the equation

$$\log P(\rm{mmHg}) = 8.677 - \frac{1672.8}{T}$$

Preparation of CF_3OPOF_2 (nc)

The following procedure was the most satisfactory one of several that were tried. A 3.64 mmole sample each of $P_2O_2F_4$ and CF_3OOH were condensed into a 125 ml Pyrex vessel at -196° . The reaction mixture was allowed to warm slowly to 22° over a 4 h period. The products were immediately separated by pumping through traps held at -78, -130 and -196° . The -78° trap retained HOPOF₂, CF_3OPOF_2 collected at -130° and COF_2 and POF_3 were found in the -196° trap. The yield of pure CF_3OPOF_2 was 65% based on the reaction

$$P_2O_2F_4 + CF_3OOH \rightarrow CF_3OPOF_2 + HOPOF_2$$

Trifluoromethoxyphosphoryl difluoride, CF₃OPOF₂, had the following physical and spectroscopic characteristics: b.p. 4.6°; m.p. --96.2°; mol. wt.: calcd., 170.6; found, 169.6; $\Delta H_{vap} = 6.56$ kcal mole⁻¹; $\Delta S_{vap} = 23.6$ e.u.; IR, cm⁻¹: 1405 (s), ν (P=O); 1275 (s), 1255 (vs), 1201 (vs), ν (CF); 1048 (s), ν (PO); 978 (s), 903 (s), 800 (m), δ (asym. PF, sym. PF, CO); 675 (w), 625 (w), 575 (s), 460 (w), 415 (m), δ (PO₂F₂, CF₃O); NMR: φ * 81.7 (d, q, PF), φ * 54.2 (d, t, CF), J(PF) = 1064 Hz J(PCF) = 7.1 Hz, J(FF) = 3.9 Hz. The vapor pressure over the range -48.5 to -9.8° is given by the equation

$$\log P(\text{mmHg}) = 3.302 + \frac{1.99 \times 10^2}{T} - \frac{3.65 \times 10^5}{T^2}$$

Reactions of CF₃OOPOF₂

Several reactions were carried out between CF_3OOPOF_2 and various substrates to see if the peroxide might be a useful synthetic reagent. The reactions were carried out in Pyrex or stainless-steel vessels by condensing in the reactants at -196° and allowing the reactor to warm to 24°. Products were separated by fractional condensation and identified by IR spectroscopy and vapor-density molecular weight. The amounts of the products formed were not determined and small amounts of other materials may have been present. The reactions are summarized in Table 1.

The reaction products with CH₃OH were separated through traps at -50, -111 and -196° . The -50° trap retained a colorless liquid which is believed to be CH₃OPOF₂; mol. wt.: calcd., 116.0; found, 119.0; IR, cm⁻¹: 2990 (w), ν (CH); 1370 (s), ν (P=O); 1075 (s), ν (PO); 935 (s), 800 (w); NMR: φ^* 82.8 (d, PF), δ 4.11 (d, CH), J(PF) = 1012 Hz, J(FH) = 12 Hz.

Reactant, mmole ^a	Time, 24°	Products
H ₂ O ^b , 0.22	4 h°	HOPOF ₂ , (HO) ₂ POF, SiF ₄ , CF ₃ OOH
H ₂ S ^d , 0.23	ld	HOPOF ₂ , POF ₃ , S, O ₂ , COF ₂ , CF ₃ OOH
HCl ^d , 0.25	14 d	POF ₃ , Cl ₂ , O ₂ , HCl, COF ₂ , CF ₃ OOH
CF ₃ CO ₂ H ^d , 0.21	1 d	CF ₃ CO ₂ H, CF ₃ OOPOF ₂
CH ₃ OH ^b , 1.22	4 h c	CH ₃ OPOF ₂ , CF ₃ OOH, SiF ₄ , other ^f
$C_2F_4^{b}$, 1.0	3 d	CF_3OOPOF_2, C_2F_4
CF ₃ OOPOF ₂ ^e , 0.75	1 h	POF_3 , PF_5 , $P_2O_3F_4$, COF_2 , CF_3OOCF_3 ,
		CF_3OOOCF_3, O_2
CF ₃ OF, 0.50	1 d	POF ₃ , COF ₂ , CF ₃ OOOCF ₃ , CF ₃ OOCF ₃ , O ₂
CF ₂ (OF) ₂ ^d , 0.25	4 h	POF_3 , COF_2 , $CF_2(OF)_2$, O_2
SF5OFd, 0.25	2 d	POF_3 , COF_2 , SF_5OF , O_2
S2O6F2 b. 0.25	1 d	$POF_{2} COF_{2} S_{2}O_{4}F_{2} O_{2}$

TABLE 1 REACTION OF CF3OOPOF2

^a An equimolar amount of CF₃OOPOF₂ was used in each case.

^b 100 ml Pyrex vessel.

 $^{\rm c}$ –196 to 22°.

^d 15 ml Pyrex vessel.

^e Photolyzed with 2.5 W 2537 Å UV in 500 ml vessel.

^f Non-volatile liquid at 22^c.

RESULTS AND DISCUSSION

The new compounds CF_3OOPOF_2 and CF_3OPOF_2 have been obtained in high yield by reactions of $P_2O_3F_4$ and $P_2O_2F_4$ with CF_3OOH . Both of these compounds are novel in that CF_3OOPOF_2 is the first fluorinated peroxide of phosphorus to be isolated and characterized and CF_3OPOF_2 is the only reported trifluoromethoxy derivative of phosphorus. The reaction to form CF_3OPOF_2 probably occurs *via* the intermediate formation of the peroxide CF_3OOPF_2 , which immediately undergoes rearrangement forming the observed product.

The new compounds were observed to decompose slowly at 22° in both Pyrex or stainless-steel containers. The rate of decomposition increased with increasing pressure and was considerably faster if a liquid phase was present at 22° . Under all conditions, CF₃OPOF₂ decomposed somewhat faster than CF₃OOPOF₂. At an initial pressure of 50 mmHg in a 100 ml Pyrex vessel, CF₃OOPOF₂ required 57 days for complete decomposition. In a 10 ml vessel, a 1 mmole sample, which was partially liquid at 22° , required only 9 days for complete decomposed at elevated temperatures forming the same products observed at 22° (mmole)

$$\begin{array}{l} \text{CF}_{3}\text{OOPOF}_{2} (0.60) \xrightarrow{2 \text{ h, } 115^{\circ}} \text{COF}_{2} (0.62) + \text{POF}_{3} (0.57) + \frac{1}{2}\text{O}_{2} (0.32) \\ \text{CF}_{3}\text{OPOF}_{2} (0.17) \xrightarrow{1 \text{ h, } 115^{\circ}} \text{COF}_{2} (0.17) + \text{POF}_{3} (0.17) \end{array}$$

SYNTHESIS OF CF3OOPOF2 AND CF3OPOF2

The ¹⁹F NMR spectra provide unequivocal identification of both compounds. The chemical shift of the CF₃O and CF₃OO groups are analogous to those in other compounds containing these groups and the expected spin coupling is observed^{18,19}. Two overlapping triplets are observed for the CF₃ groups in each compound giving rise to a five-line multiplet with CF₃OOPOF₂ and a six-line pattern with CF₃OPOF₂. The IR spectra of the compounds provide further positive identification and the expected number of fundamental stretching frequencies are observed. Only v(P=O) and v(CF) can be positively assigned, and tentative assignments are given in the experimental section.

The v(P=O) stretches at 1405 and 1395 cm⁻¹ for CF₃OPOF₂ and CF₃OOPOF₂, respectively, indicate a high group electronegativity for both CF₃O and CF₃OO. Comparison with the halogens as a plot of $1/3(\Sigma$ electronegativities) versus v(P=O) gives values of 3.9 for CF₃O and 3.8 for CF₃OO²⁰. The values obtained in this comparison agree well with those predicted by the method of plotting the electronegativity versus the average of the v(S=O) symmetric and asymmetric stretching frequencies in FSO₂X^{21, 22}, where the compounds CF₃OSO₂F and CF₃OOSO₂F²³ are compared with fluorosulfuryl halides.

Trifluoromethylperoxyphosphoryl difluoride was viewed as a possible reagent for the synthesis of compounds containing the POF₂ and CF₃OO groups. Several reactions were carried out but only two were successful. As shown in Table 1, either the reactions did not go under the conditions employed or the reaction served to promote the decomposition of CF₃OOPOF₂. It was hoped that the reactions would proceed according to the equations

 $CF_{3}OOPOF_{2} + ROF \rightarrow ROOOCF_{3} + POF_{3}$ $CF_{3}OOPOF_{2} + X_{2} \rightarrow CF_{3}OOX + XPOF_{2}$ $CF_{3}OOPOF_{2} + RH \rightarrow CF_{3}OOH + RPOF_{2}$

The reaction with CF_3OF is noteworthy in that some CF_3OOOCF_3 was observed. With CH_3OH , the new compound CH_3OPOF_2 was obtained in low yields. The low yield can probably be attributed to competing reactions of CH_3OH and possibly CF_3OOH with PF bonds forming HF and additional CH_3O and CF_3OO bonds to phosphorus.

The photolysis of CF₃OOPOF₂ gives rise to products which are similar to those observed when OPF₂Br is photolyzed with oxygen forming $P_2O_3F_4$ and Br_2^{12} . Taking into account the fact that CF₃OOPOF₂ can decompose to COF₂, POF₃ and O₂ and that CF₃OOOOCF₃ would be unstable under these conditions, unlike Br₂, the following scheme is reasonable to explain the observed products.

$$CF_{3}OOPOF_{2} \rightarrow OPF_{3} + COF_{2} + \frac{1}{2}O_{2}$$

$$CF_{3}OOPOF_{2} + O_{2} \xrightarrow{h\nu} P_{2}O_{3}F_{4} + [CF_{3}OOOOCF_{3}]$$

$$[CF_{3}OOOOCF_{3}] + O_{2} \xrightarrow{h\nu} CF_{3}OOCF_{3} + CF_{3}OOOCF_{3} + O_{2}$$

This reaction scheme implies that CF_3OOPOF_2 does not form CF_3O • radicals directly. Photolysis of CF_3OOOCF_3 forms CF_3OOCF_3 and O_2^{24} and other sources of CF_3O • radicals such as CF_3OF and CF_3OOCF_3 do not yield CF_3OOOCF_3 when photolyzed in the presence of O_2 . On the other hand, compounds which are possible sources of CF_3OO • radicals, such as CF_3OOF , do yield CF_3OOOCF_3 on photolysis in the presence of O_2^{25} .

ACKNOWLEDGMENT

This work was supported in part by the National Science Foundation, Grant No. GP-23098, and the Petroleum Research Fund of the American Chemical Society, Grant No. 4653-AC3.

The authors thank D. T. Dix and the Dow Chemical Co. for the use of the NMR spectrometer.

REFERENCES

- 1 R. SCHMUTZLER, Adv. Fluorine Chem., 5 (1965) 31.
- 2 R. E. BANKS, Fluorocarbons and their Derivatives, Oldbourne Press, London, 1964, p. 82-126.
- 3 A. B. BURG, Accounts Chem. Res., 2 (1969) 353.
- 4 D. E. YOUNG AND W. B. FOX, Inorg. Nuclear Chem. Letters, 7 (1971) 1033.
- 5 S. C. PEAKE, M. FILD, M. J. C. HEWSON AND R. SCHMUTZLER, Inorg. Chem., 10 (1971) 2723.
- 6 G. SOSNOVSKY AND J. H. BROWN, Chem. Rev., 66 (1966) 529.
- 7 V. E. FLUCK AND W. STECK, Z. Anorg. Allgem. Chem., 388 (1972) 53.
- 8 P. A. BERNSTEIN, F. A. HOHORST AND D. D. DESMARTEAU, J. Amer. Chem. Soc., 93 (1971) 3882.
- 9 D. D. DESMARTEAU, Inorg. Chem., 11 (1972) 193.
- 10 K. B. KELLOGG AND G. H. CADY, J. Amer. Chem. Soc., 70 (1948) 3986.
- 11 E. E. LEWIS AND M. A. NAYLOR, J. Amer. Chem. Soc., 69 (1947) 1968.
- 12 P. A. BERNSTEIN, F. A. HOHORST, M. EISENBERG AND D. D. DESMARTEAU, *Inorg. Chem.*, 10 (1971) 1549.
- 13 D. D. DESMARTEAU, J. Amer. Chem. Soc., 91 (1969) 6211.
- 14 J. K. RUFF, A. R. PITOCHELLI AND M. LUSTIG, J. Amer. Chem. Soc., 89 (1967) 2841.
- 15 F. A. HOHORST AND J. M. SHREEVE, J. Amer. Chem. Soc., 89 (1967) 1809.
- 16 J. K. RUFF, Inorg. Synth., XI (1968) 131.
- 17 F. B. DUDLEY AND G. H. CADY, J. Amer. Chem. Soc., 89 (1957) 513.
- 18 D. D. DESMARTEAU, Inorg. Chem., 9 (1970) 2179.
- 19 P. G. THOMPSON, J. Amer. Chem. Soc., 89 (1967) 4316.
- 20 V. A. MÜLLER, E. NIECKE AND O. GLEMSER, Z. Anorg. Allgem. Chem., 350 (1967) 246.
- 21 W. B. FOX AND G. FRANZ, Inorg. Chem., 5 (1966) 946.
- 22 E. A. ROBINSON, Canad. J. Chem., 39 (1961) 247.
- 23 W. P. VAN METER AND G. H. CADY, J. Amer. Chem. Soc., 82 (1960) 6005.
- 24 L. R. ANDERSON, D. E. GOULD, W. B. FOX, F. A. HOHORST AND D. D. DESMARTEAU, to be submitted for publication.
- 25 D. D. DESMARTEAU, unpublished results.